Measurement of High- Q^2 Neutral and Charged Current Deep Inelastic e^+p Scattering Cross Sections with a Longitudinally Polarised Positron Beam at HERA

Trevor Stewart On behalf of the ZEUS Collaboration

University of Toronto, Dept. of Physics, 60 St. George St., Toronto, Ontario, M5S 1A7, Canada

Abstract. Measurements of the cross sections for neutral current (NC) and charged current (CC) deep inelastic scattering in e^+p collisions with a longitudinally polarised positron beam are presented. The measurements are based on a data sample with an integrated luminosity of 135.48 pb^{-1} for NC and 132 pb^{-1} for CC collected with the ZEUS detector at HERA in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The total CC cross section is presented at positive and negative values of the longitudinal polarization of the positron beams and are used to determine a lower limit on the mass of a hypothetical right-handed W boson. The single differential NC (CC) cross sections $d\sigma/dQ^2$, $d\sigma/dx$ and $d\sigma/dy$ are presented for $Q^2 > 185 GeV^2$ ($Q^2 > 200 GeV^2$). The reduced NC (CC) cross section $\tilde{\sigma}$ is presented. The measurements for both CC and NC agree well with the predictions of the Standard Model (SM).

INTRODUCTION

Deep inelastic scattering (DIS) of leptons off nucleons has proved to be a key tool to understanding the structure of the proton. The neutral current (NC) process at HERA, $e^-(e^+)p \to e^-(e^+)X$, is mediated by the exchange of a γ or Z_0 boson, while the charged current (CC) process, $e^-(e^+)p \to v(\bar{v})X$, is mediated by the exchange of a W^\pm boson.

The NC and CC processes are described by three invariant variables: Q^2 , the negative four-momentum squared; x, the Bjorken scaling variable; y, the inelasticity. These variables are related by $Q^2 = sxy$, where s is the centre-of-mass energy squared, neglecting the mass of the proton and electron.

In 2002, HERA was upgraded to provide longitudinally polarised e^{\pm} beams. The polarisation of the e^{\pm} beam is defined as $P_e = (N_R - N_L)/(N_R + N_L)$, where N_R (N_L) is the number of right (left) handed e^{\pm} in the beam.

The NC and CC[1] cross section measurements were made using e^+p data collected in 2006-2007, with a proton beam energy of $E_p=920~GeV$, and a e^+ beam of $E_e=27.5~GeV~(\sqrt{s}=318~GeV)$. The NC (CC) e^+p data set was divided into a 78.8 $pb^{-1}~(75.8~pb^{-1})~P_e=+32\%~(P_e=+33\%)$ sample and a 56.7 $pb^{-1}~(56.0~pb^{-1})~P_e=-36\%~(P_e=-36\%)$ sample. The values of $\mathscr L$ and P_e are not identical due to differences between the NC and CC data selection.

CROSS SECTIONS

The polarised CC reduced cross-section can be written as follows:

$$\tilde{\sigma}_{CC}^{e^{-\{+\}}p} = (1 \pm P_e)\tilde{\sigma}_{CC,P_e=0}^{e^{-\{+\}}p} = x[(u\{\bar{u}\} + c\{\bar{c}\}) + (1 - y)^2(\bar{d}\{d\} + \bar{s}\{s\})]$$
(1)

where, for example, the PDF $\bar{u}(x,Q^2)$ gives the number density of anti-up quarks for a given x and Q^2 . Measurement of the e^+p (e^-p) cross-section is directly sensitive to the d-quark (u-quark) density of the proton. Additionally, the CC cross-section scales linearly with e^\pm beam polarisation.

The NC born-level cross section is given by

$$\frac{d^2 \sigma_{NC}^{e^{\pm} p}}{dx dQ^2} = \frac{2\pi \alpha^2}{x Q^4} [Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L]$$
 (2)

$$\tilde{\sigma}_{NC}^{e^{\pm}p} = \frac{xQ^4}{2\pi\alpha^2} \frac{1}{Y_+} \frac{d^2 \sigma_{NC}^{e^{+}p}}{dxdQ^2} = \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F}_L$$
 (3)

where $\tilde{\sigma}_{NC}^{e^{\pm}p}$ is the reduced cross-section, and $Y_{\pm}=1\pm(1-y)^2$. \tilde{F}_2 , $x\tilde{F}_3$ and \tilde{F}_L are the generalised structure functions, and can be written as a linear combination of the hadronic structure functions, F_2 , $F_{2,3}^{\gamma Z}$ and $F_{2,3}^{Z}$, due to γ exchange, $\gamma-Z_0$ interference, and Z_0 exchange respectively. The $x\tilde{F}_3$ structure function becomes significant at high- Q^2 reducing the e^+p cross-section. \tilde{F}_L is expected to contribute only at large y, and be negligible at high- Q^2 and high x.

RESULTS

Unpolarised CC and NC DIS

The CC and NC polarised data can be combined to into an effectively unpolarised, $P_e = 0$, data set after correcting for any residual polarisations. The e^+p CC DIS and $e^\pm p$ NC DIS reduced cross-sections (e^-p NC cross-section published in [2]) as a function of x in fixed Q^2 bins are shown in Fig.1. The SM predictions evaluated using the different PDFs give a good description of the data. The contributions of the PDF combinations (d+s) and $x(\bar{u}+\bar{c})$ to the e^+p CC DIS reduced cross-section are presented in Fig. 1 (left).

The significant difference between the NC e^+p and e^-p cross-sections observed at high- Q^2 due to the $x\tilde{F}_3$ contribution, which suppresses the e^+p cross-section with respect to the e^-p data. The reduced cross section measurement is in good agreement with the SM prediction.

FIGURE 1. The e^+p CC DIS (left) and $e^\pm p$ NC DIS (right) reduced cross-section in as a function of x at fixed Q^2 . The circles represent the data points and the curves are SM predictions using different PDFs. The dashed and dotted lines on the left plot show the contributions of (d+s) and $x(\bar{u}+\bar{c})$, respectively.

Polarised CC and NC DIS

The total e^+p CC DIS cross-section, corrected to the Born level in the electroweak interaction, in the kinematic region $Q^2 > 200 \ GeV^2$ was measured to be:

$$\sigma^{CC}(P_e = -0.36 \pm 0.014) = 22.9 \pm 0.82 \text{ (stat.)} \pm 0.60 \text{ (lumi.)} \pm 0.40 \text{ (syst.) pb}$$
 (4)

$$\sigma^{CC}(P_e = +0.33 \pm 0.012) = 48.0 \pm 1.01 \text{ (stat.)} \pm 1.25 \text{ (lumi.)} \pm 0.77 \text{ (syst.) pb}$$
 (5)

In Fig. 2 (right) the total e^+p CC cross-section is shown for both positive and negative values of the e^+ beam polarisation along with previous ZEUS and H1 e^+p and e^-p data[3, 4, 5, 6, 7, 8]. The results are in good agreement with the SM, which predict and increase (decrease) in $\tilde{\sigma}$ for positive (negative) e^+ polarisation. By extrapolating the total cross-section to $P_e = -1$ an upper limit on the cross-section can be converted to a lower limit on the mass of the right-handed W boson, W_R . The limits obtained are:

$$\sigma^{CC}(P_e = -1) < 2.9 \text{ pb at } 95\%\text{CL}$$
 (6)

$$M_{W_P} > 198 \text{ GeV at } 95\%\text{CL}$$
 (7)

The results are consistent with zero as the SM predicts.

The single differential e^+p CC cross-sections $d\sigma/dQ^2$, $d\sigma/dx$ and $d\sigma/dy$ were measured for both positive and negative e^+ beam polarisation values. The cross-sections exhibit an overall difference between the negative and positive polarisations and are consistent with the SM.

The single differential NC e^+p cross-section, $d\sigma/dQ^2$, is shown in Fig. 2 (left) for both positive and negative e^+ beam polarisation values. The cross-sections, $d\sigma/dx$ and $d\sigma/dy$ for both $Q^2 > 185~GeV^2$ and $Q^2 > 3000~GeV^2$ were extracted for each lepton beam polarisation as well. All single differential cross-sections are well described by

FIGURE 2. (left) Single differential NC e+p cross sections $d\sigma/dQ^2$ for positive (top) and negative (middle) e^+ beam polarisation and the ratio of $d\sigma/dQ^2$ using negative and positive polarisation (bottom). The circles represent the data points and the curves show the predictions of the SM evaluated using HERAPDF1.5. (right) Total $e^{\pm}p$ CC cross sections as a function of the lepton beam polarisation, P_e .

SM predictions. The reduced cross-sections for both positive and negative e^+ beam polarisations were measured and agree well with the SM predictions. Parity violation is clearly seen in $d\sigma/dQ^2$ and the reduced cross-section.

SUMMARY

Polarised and unpolarised e^+p high- Q^2 NC and CC DIS cross-sections have been presented. The total e^+p CC cross-section at both positive and negative polarisation was shown, and is consistent with 0 when extrapolated to $P_e = -1$. The NC cross-section $d\sigma/dQ^2$ and polarised reduced cross-sections, clearly show parity violation at high- Q^2 . The unpolarised e^+p NC reduced cross-section was presented with the previously measured e^-p cross-section showing the effect of $x\tilde{F}_3$ at high- Q^2 . The results of both the CC and NC analyses are in good agreement with the SM. The newly measured NC reduced cross-sections can be used to better constrain the proton PDFs.

REFERENCES

- 1. ZEUS Collab., H. Abramowicz et al., Eur. Phys. J C 70, 945 (2010).
- 2. ZEUS Collab., S. Chekanov et al., Eur. Phys. J C 62, 625 (2008).
- 3. ZEUS Collab., S. Chekanov et al., Phys. Lett *B* 539, 197 (2002). Erratum in Phys. Lett. *B* 552, 308 (2003).
- 4. ZEUS Collab., S. Chekanov et al., Eur. Phys. J C 32, 1 (2003).
- 5. ZEUS Collab., S. Chekanov et al., Phys. Lett *B* 637, 28 (2006).
- 6. ZEUS Collab., S. Chekanov et al., Eur. Phys. J C 61, 223 (2009).
- 7. H1 Collab., C. Adloff et al., Eur. Phys. J *C* 30, 1 (2003).
- 8. H1 Collab., A. Aktas et al., Phys. Lett *B* 634, 173 (2006).